Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Why do we make Cu(In,Ga)Se2 solar cells non-stoichiometric?

Identifieur interne : 000227 ( Main/Repository ); précédent : 000226; suivant : 000228

Why do we make Cu(In,Ga)Se2 solar cells non-stoichiometric?

Auteurs : RBID : Pascal:13-0351844

Descripteurs français

English descriptors

Abstract

The superior transport and lifetime properties of Cu-rich chalcopyrite semiconductors are discussed. The reason why solar cells are made from Cu-poor absorbers in spite of their inferior properties is the CdS/ absorber interface which leads to high recombination in the case of Cu-rich absorbers. We report on Cu-rich solar cells with a Cu-poor surface, which have reached 13.1% efficiency.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0351844

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Why do we make Cu(In,Ga)Se
<sub>2</sub>
solar cells non-stoichiometric?</title>
<author>
<name sortKey="Siebentritt, Susanne" uniqKey="Siebentritt S">Susanne Siebentritt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Luxembourg, Laboratory for Photovoltaics</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="G Tay, Levent" uniqKey="G Tay L">Levent G Tay</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Luxembourg, Laboratory for Photovoltaics</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Regesch, David" uniqKey="Regesch D">David Regesch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Luxembourg, Laboratory for Photovoltaics</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aida, Yasuhiro" uniqKey="Aida Y">Yasuhiro Aida</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Luxembourg, Laboratory for Photovoltaics</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Depredurand, Valerie" uniqKey="Depredurand V">Valérie Depredurand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Luxembourg, Laboratory for Photovoltaics</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>Belvaux</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0351844</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0351844 INIST</idno>
<idno type="RBID">Pascal:13-0351844</idno>
<idno type="wicri:Area/Main/Corpus">000511</idno>
<idno type="wicri:Area/Main/Repository">000227</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Cadmium sulfide</term>
<term>Chalcopyrite</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Durability</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Performance evaluation</term>
<term>Quaternary compound</term>
<term>Semiconductor materials</term>
<term>Solar cell</term>
<term>Transport properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire</term>
<term>Propriété transport</term>
<term>Durabilité</term>
<term>Matériau absorbant</term>
<term>Evaluation performance</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Cuivre</term>
<term>Chalcopyrite</term>
<term>Semiconducteur</term>
<term>Sulfure de cadmium</term>
<term>Cu(In,Ga)Se2</term>
<term>CdS</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The superior transport and lifetime properties of Cu-rich chalcopyrite semiconductors are discussed. The reason why solar cells are made from Cu-poor absorbers in spite of their inferior properties is the CdS/ absorber interface which leads to high recombination in the case of Cu-rich absorbers. We report on Cu-rich solar cells with a Cu-poor surface, which have reached 13.1% efficiency.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>119</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Why do we make Cu(In,Ga)Se
<sub>2</sub>
solar cells non-stoichiometric?</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Thin-film Photovoltaic Solar Cells</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SIEBENTRITT (Susanne)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GÜTAY (Levent)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>REGESCH (David)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AIDA (Yasuhiro)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DEPREDURAND (Valérie)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SHAH (Arvind Victor)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>KREBS (Frederik Christian)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>TIWARI (Ayodhya N.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>POORTMANS (Jef)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>MCEVOY (Augustin)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>University of Luxembourg, Laboratory for Photovoltaics</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399</s1>
<s2>4000 Roskilde</s2>
<s3>DNK</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Imec</s1>
<s2>Kapeldreef 75</s2>
<s3>BEL</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129</s1>
<s2>8600 Duebendorf</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>18-25</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501000160030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>87 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0351844</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The superior transport and lifetime properties of Cu-rich chalcopyrite semiconductors are discussed. The reason why solar cells are made from Cu-poor absorbers in spite of their inferior properties is the CdS/ absorber interface which leads to high recombination in the case of Cu-rich absorbers. We report on Cu-rich solar cells with a Cu-poor surface, which have reached 13.1% efficiency.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Transport properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propiedad transporte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Durabilité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Durability</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Durabilidad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>336</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0351844
   |texte=   Why do we make Cu(In,Ga)Se2 solar cells non-stoichiometric?
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024